PET & PET/CT Instrumentation: Performance & Quality Control Prepared by James R. Halama, PhD Loyola University Medical Center Maywood, IL

1. Positron and Negatron Decay:

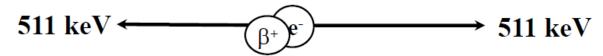
- a) $p^+ \longrightarrow n^0 + \beta^+ + \nu$ (positron decay). Proton-heavy nucleus converts a proton to a neutron and emits a positron (β +) and neutrino (ν)
- b) $n^0 \longrightarrow p^+ + \beta^- + \nu$ (negatron decay). Neutron-heavy nucleus converts a neutron to a proton and emits a negatron (β^-) and anti-neutrino (ν)

2. Commercial Production of Positron Emitters

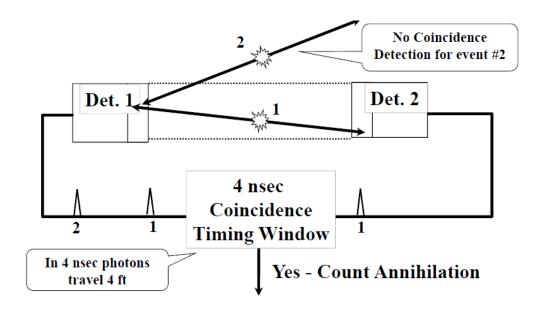
<u>Isotope</u>	Half-life	Method
18F	110 Min.	$^{18}{\rm O}({\rm p,n})^{18}{\rm F}^*$
11C	20 Min.	$^{14}N(p,\alpha)^{11}C$
13N	10 Min.	$^{13}C(p,n)^{13}N$
15 O	2 Min.	$^{14}O(d,n)^{15}O$
82Rb	76 Sec.	82Sr/82Rb Gen.

^{* &}lt;sup>18</sup>F-FDG manufactured commercially

3. Positron Emitting Radiopharmaceuticals


Radiopharmaceutical	Half-life	Physiological Measurement
F-18 FDG	110 Min.	Glucose Metabolism
C-11 Acetate	20 Min.	Prostate Cancer diagnosis
N-13 ammonia	10 Min.	Blood Flow
O-15 Oxygen	2 Min.	Oxygen Metabolism
Rb-82 chloride	76 Sec.	Cardiac Blood Flow

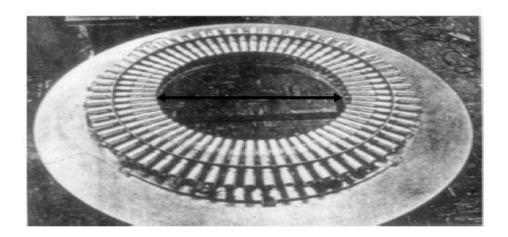
4. Positron Properties


- a) Positively charged electron (the negatron) with the same mass
- b) When emitted during positron decay, has a spectrum of kinetic energies up to the energy of decay, E_{max} of the β^+ particle
- c) **Anti-electron** when paired with an electron annihilates the electron, and vice versa
- d) **Positronium** paired electron orbits positron to form an atom-like structure for 87 psec $t_{1/2}$ before annihilation

5. Positron-Electron Annihilation

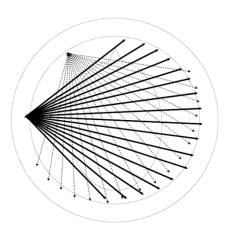
- a) Simultaneous emission of two 511 gamma rays leaving in opposite directions.
- b) Satisfies conservation of energy law.
- c) Satisfies conservation of momentum law gamma rays have momentum.
- d) diagram:

6. Count Annihilations by Coincidence Detection

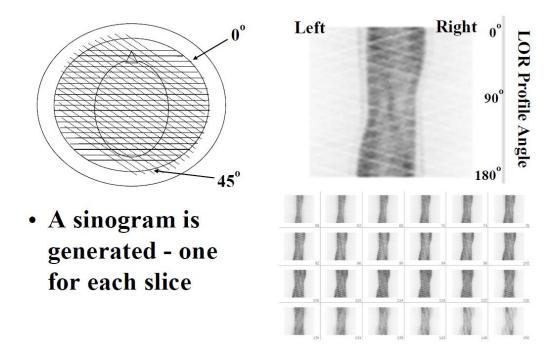


7. Power of Coincidence Detection

- a) Sensitive only to annihilations in the volume between two detectors provides spatial resolution
- b) Electronic collimation No lead collimation required
- c) Higher sensitivity 100 times more counts for the same activity compared to the gamma camera


8. PET Scanner Design

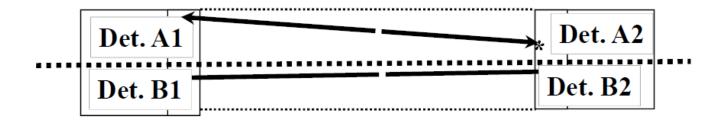
- a) Tomographic device with a complete ring of detectors
- b) A single ring samples one slice in the patient
- c) Detector material Bismuth Germanate (BGO) chosen for high stopping power of $511 \text{ keV } \gamma$'s



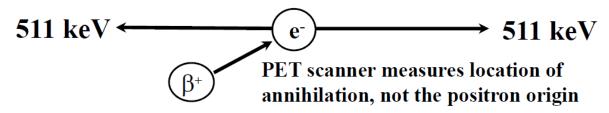
9. One Detector Operated in Coincidence with Many Detectors

- a) Each detector is operated in coincidence with many detectors on the opposite side of the patient.
- b) Acquisition geometry identical to fanbeam X-ray CT.
- c) Lines-of-response measured over 360 degrees give complete projection image set for reconstruction.

10. Raw Data Stored as Sinogram

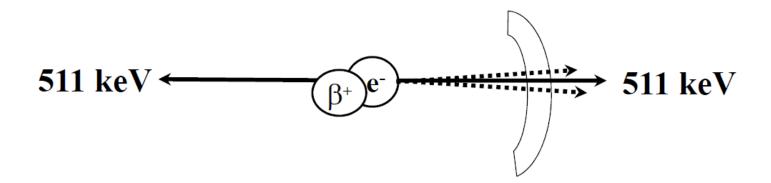


11. Tomographic Image Reconstruction

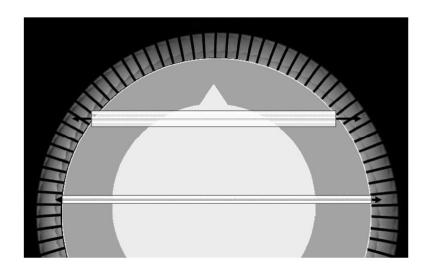

- a) Filtered backprojection not preferred
- b) Iterative reconstruction by OSEM is preferred it incorporates, random, scatter, and attenuation corrections

12. Better Spatial Resolution with Smaller Detectors

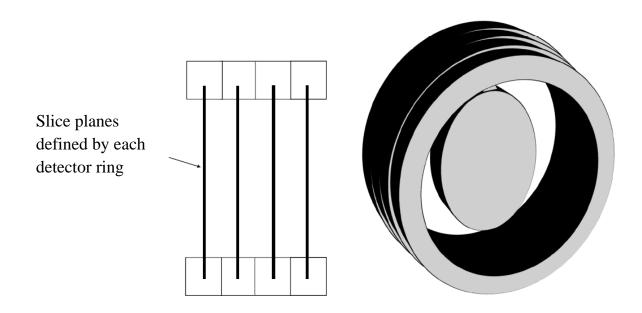
- a) Resolution best with small detector elements.
- b) Dividing detectors in half doubles the spatial resolution
- c) Resolution best at object center.


13. Positron Range Reduces Spatial Resolution

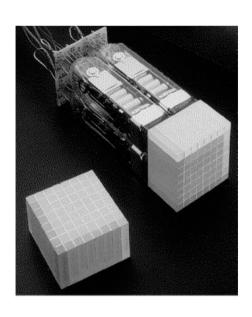
Nuclide	Half-Life	Max β+ energy (MeV)	Max β+ range (mm) in soft tissue
¹¹ C	20.3 min	0.97	4.1
^{13}N	9.96 min	1.19	5.1
^{15}O	122 sec	1.73	7.3
$^{18}{ m F}$	109.8 min	0.64	2.4
⁶⁸ Ga	68.3 min	2.92	8.0
82 Rb	75 sec	3.38	10

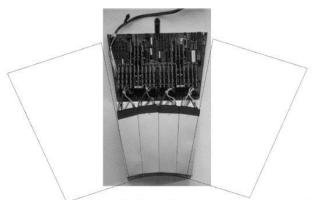

14. Angular Variation Reduces Spatial Resolution

- a) $180^{\circ} \pm 1/4^{\circ}$ variation in angular departure.
- b) Resolution loss depends on separation distance of the two detectors
- c) $R_{loss} \sim 0.0024 * D$ where D is the diameter of the PET ring
- d) For 50 cm diameter ring, $R_{loss} \sim 1.2$ mm.



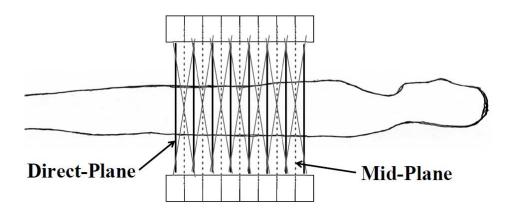
15. Parallax Error Reduces Spatial Resolution


- a) Depth of interaction in crystal not accounted for.
- b) Leads to loss of spatial resolution at the periphery.
- c) Best at the center.

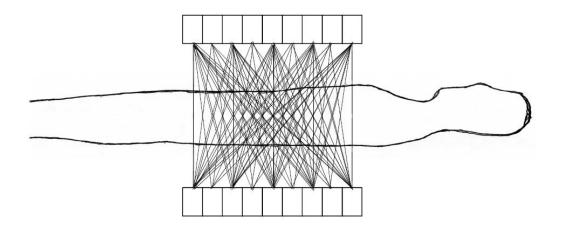


16. Multi-Slice Scanner with Multiple Detector Rings

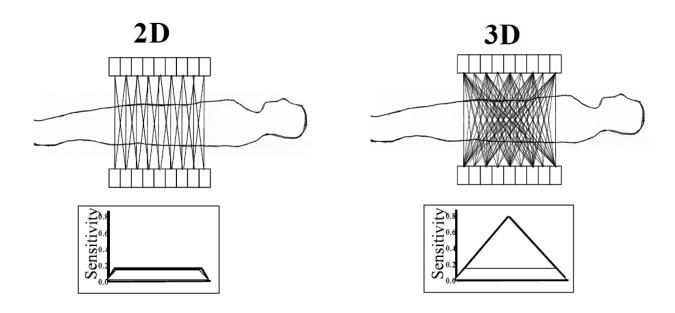
17. PET Scanner Crystal Block Design



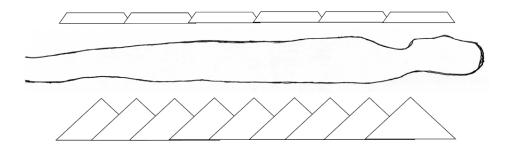
- Detector blocks arranged to form a circle
- 8x8 blocks in a circle form 8 rings of crystals


18. 2D Acquisition Method

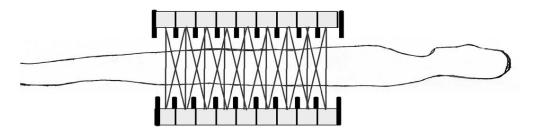
- a) The system counts annihilations from within the direct plane of each detector ring and across adjacent rings & then sums to form a mid-plane slice with twice as many counts.
- b) For an 8 ring scanner, 15 slices are acquired (2N-1)


19.3D Acquisition Method

a) Count annihilations across all possible slice-ring combinations. Five times more sensitive


20. Axial Sensitivity Profiles

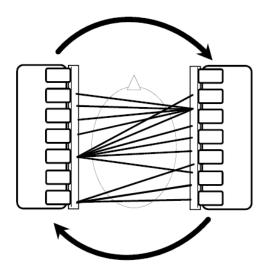
b) 3D sensitivity is peaked at the center


21. Whole Body Multiple Scan Protocols

- a) 2D Acquisition with 10% Overlap at 5 min./stop. 30 min. acquisition for 6 stops
- b) 3D Acquisition with 50% Overlap at 2 min./stop. 18 min. acquisition for 9 stops

22. 2D Septal Shielding

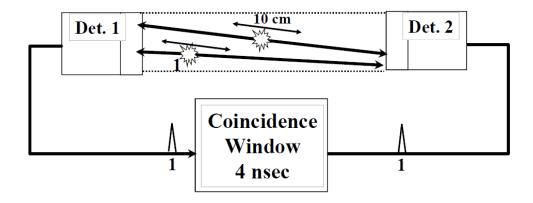
- a) Lead septa inserted between each ring; allow only annihilation events to be counted from within the direct and adjacent slice planes.
- b) Septa reduce dead time losses and scatter from the patient.


23. PET Detector Crystals

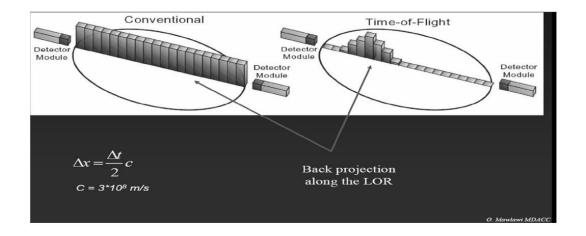
	NaI	BGO	LSO
Stopping Power	0.34/cm	0.92/cm	0.87/cm
Light Output	100%	15%	75%
Energy Resolution	10%	25%	15%
Decay Time	240 ns	300 ns	40 ns

24. Current PET Scanners

	GE PET/CT Discovery VCT	Siemens Biograph TruePoint PETCT	Philips GEMINI TF 64
Detectors	13,440 4.7x6.3x30 mm BGO	32448 4.0 x 4.0 x 20 mm LSO	28,336 4.0 x 4.0 x 22 mm LYSO
Stopping Power	95%	High	72%
Axial FOV (cm)	15.7	21.6	18
Number of rings	23	54	45
Acquistion Modes	2D / 3D	3D	3D
Slice Spacing (mm)	3.3	2	2.0 or 4.0
Resolution @ 10 cm (mm)	5.0	4.2	4.7


25. NaI Gamma Camera Coincidence Imaging Systems

	Philips/ADAC MCD	Philips/ Marconi PCD	Siemens e.cam Duet
Detectors	2 500x380x16 mm NaI(TI)	2 or 3 470x593x19 mm NaI(TI)	2 530x390x25 mm NaI(TI)
Axial FOV (cm)	38	38	38
Number of planes	98	128	80
Spacing (mm)	3.9	3	4.8
Resolution @ center (mm)	4.8	4.8	4.7


26. Time-of-Flight PET

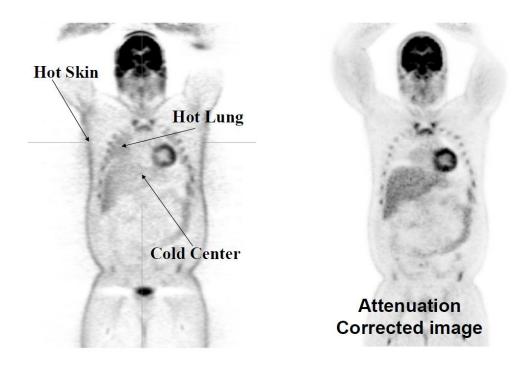
- a) In addition to recording the PET detector crystal pair, can also record the difference in arrival time (TOF).
- b) Requires events to be stored in list mode
- c) with each coincidence event, the detector pair and difference in arrival time are recorded
- d) If timing resolution is 0.3 nsec, can measure origin to within 10 cm.

27. Time-of-Flight Reconstruction

- a) In back projection a probability function for the annihilation origin is used to improve the reconstruction and image quality. Increased Signal/Noise ratio.
- b) Perceived improvement in sensitivity because fewer counts may be needed.
- c) Best for large patients. There is no advantage in children for scanner with 0.5 nsec timing resolution or greater.

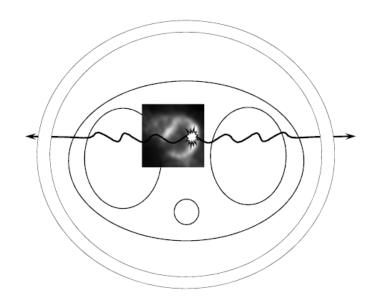
28. Commercially Available PET/CT Scanners

- a) Siemens Biograph (CT 16-64 slice)
- b) GE ST Discovery (CT 8-64 slice)
- c) Philips Gemini (CT 16-64 slice)

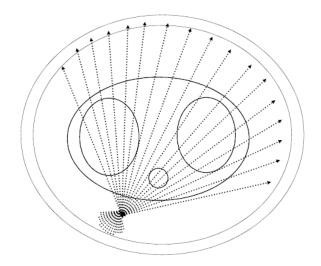


29. Fused PET/CT Image

- a) 44-year-old female post hysterectomy and oophorectomy for cervical cancer
- b) Fused PET/CT shows recurrence in the periaortic nodes
- c) Fused on a single device



30. Attenuation Artifacts


31. Coincidence Detection Requires Both Photons to Exit

- a) Combined path is total thickness of patient, leading to large artifacts.
- b) Can calculate attenuation correction factors based on total patient thickness. Easy to apply a correction.

32. Transmission Imaging with External ⁶⁸Ge/⁶⁸Ga source

- a) Measure transmission of 511 KeV annihilation photons from $^{68} \rm{Ge}/^{68} \rm{Ga}$ using rotating $^{68} \rm{Ge}/^{68} \rm{Ga}$ Source
- b) 68 Ga Positron emitter; $t_{1/2} = 1$ hr
- c) 68 Ge Electron Capture; $t_{1/2} = 271 d$
- d) Required 5 min acquisition per bed position

33. Transmission Imaging with Helical CT

- a) Continuous rotating x-ray tube and detectors based on slip-ring technology
- b) Complete whole-body CT scan < 1 min

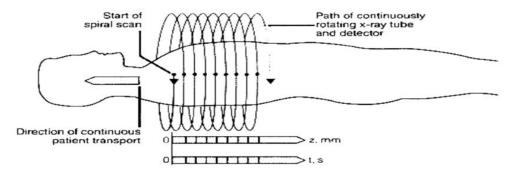
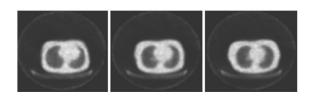
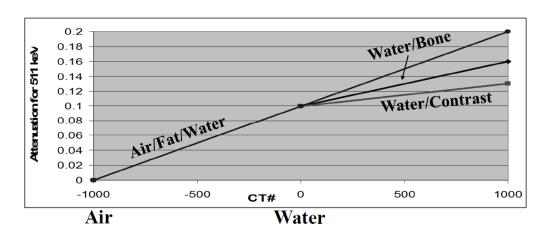



FIGURE 6—3. First step in spiral-helical CT: data acquisition. This figure illustrates that as the patient is transported through the gantry aperture, the x-ray tube traces a spiral path around the patient, collecting data as it rotates. (Courtesy of Siemens Medical Systems, Inc.)

34. Attenuation Correction Density Maps

Density map of chest using isotope; low resolution and noisy



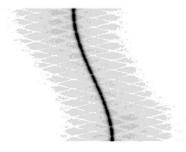
X-ray CT of Chest; much higher resolution

35. X-ray CT Attenuation Mapping

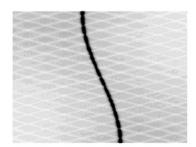
- a) Attenuation scale factors for bone and contrast media different than soft tissue.
- b) Bi-linear mapping with lower slope for CT#'s > 0.

36. Artifacts from CT Contrast

- a) Presence of CT contrast during CT scan will cause artifacts in PET attenuation corrected images.
- b) Linear attenuation coefficients at 60-70 keV of CT do not scale accurately to 511 keV for contrast media or other objects of high density.
- c) CT contrast creates hot spot lesions in PET images.
- d) Reference: Blodgett_ClinImag11_49.pdf

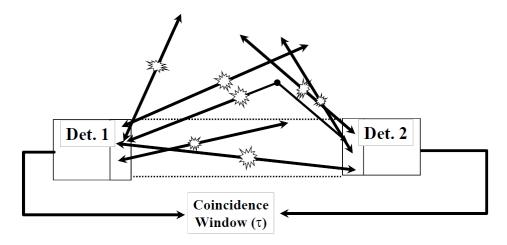

37. Quantitative PET

- a) Measures uptake of a PET radiopharmaceutical, e.g., F-18 FDG in tissues and tumors.
- b) Requires scan output to be recorded in units of activity concentrations (Bq/ml).
- c) Requires several scanner corrections to be applied:
 - i. Scatter
 - ii. Randoms
 - iii. Dead time
 - iv. Attenuation


38. Total Coincidence Counts

- a) Scatter accounts for ~ 15 (2D) 40% (3D) of Total coincident counts. Can only be estimated.
- b) Random counts may exceed the True counts. Can easily be measured by delay coincidence channel.
- c) Scatter and Randoms add a background to the reconstructed images resulting in less contrast.

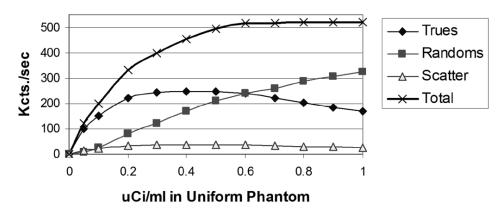
39. Distribution of Scatter & Randoms


Sinogram of line source with scatter. Scatter coincidence counts observed along-side the sides of the source.

Sinogram of line source with scatter and randoms.
Random counts uniformly added over the entire imaging volume.

40. Single Detector Count Rate

- a) Singles Rate –Photon count rate on a single detector.
- b) Singles/Coincidence Ratio is ~ 50:1

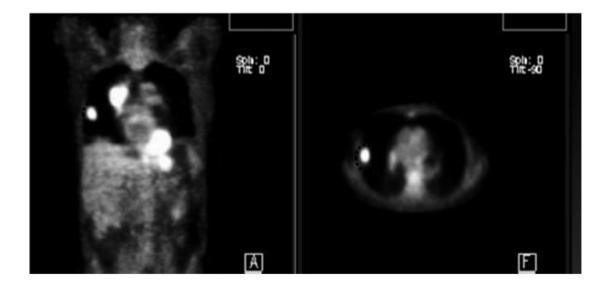


41. Random Count Rate

- a) Random counts occur when two or more positron-electron annihilations occur.
- b) Random Rate = (Det 1 * Det 2) x t
- c) Random Rate \sim (Singles Rate)² x t

42. Dead-Time Correction

- a) Count rate response curve used to correct for count losses due to dead time.
- b) Acquired over a 12-hr period.


43. Standardized Uptake Value

- a) A unit-less value g/ml; assume tissue density of 1 ml/g
- b) Lean Body Mass may be used instead of Body Mass (SUV_{lbm})
- c) SUV > 1 implies active uptake
- d) SUV < 1 implies an exclusion of uptake

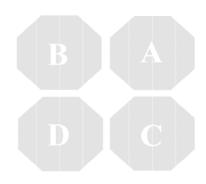
$$SUV = \frac{\text{Tissue FDG Concentration (Bq/ml)}}{\text{Injected Dose (Bq)/Body Mass (g)}}$$

44. VOI Extraction of SUV

- a) Extract maximum counts, Bq/ml, or SUV in VOI.
- b) Reduces errors in drawing of VOI, but subject to statistical variation within VOI.
- c) SUV_{peak} with average of the nearest neighbors to reduce statistical variations.

45. Accuracy of SUV

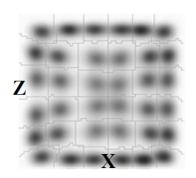
- a) Requires accurate
 - i. Sensitivity calibration of the PET scanner.
 - ii. measurement of patient weight.
 - iii. measurement of injected activity and decay corrected to within 5 min.
- b) Time dependent SUV increases over time for FDG, must scan patients within \pm 10 min. time window.
- c) Underestimated in small lesions of diameter < 3 x system resolution (~ 3 x 6 mm) due to partial volume averaging of normal tissue with lesion.


46. SUV - Other Patient Related Factors

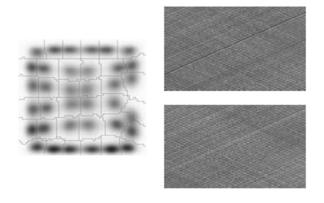
- a) Blood glucose levels
- b) Patient activity
 - i. patient remains in quiet sedentary state during uptake over a period of 60 min. or longer
 - ii. Note prior muscular activity
- c) Voiding of bladder prior to scanning
- d) Radioactivity of prior NM study
- e) Presence of contrast media

47. Calibrations & QC Tests

- a) Energy and linearity
- b) Normalization
- c) Dead time & Timing
- d) Sensitivity Calibration
- e) Blank scan for attenuation correction (No CT)
- f) PET/CT Calibrations


48. Anger Camera Logic Used in Multiple Crystal Blocked Detectors

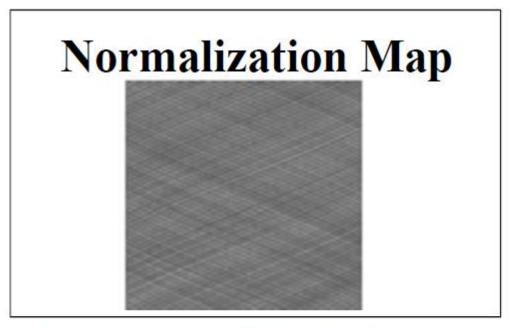
$$X = \frac{B+D}{A+B+C+D}$$

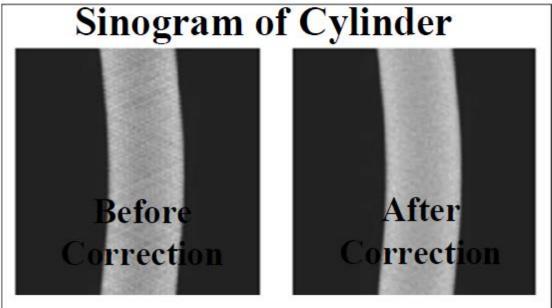

$$Z = \frac{C + D}{A + B + C + D}$$

Brad Kemp Mayo Clinic

- Each crystal produces a unique combination of signals in the PMTs.
- Refer X and Z to preset values in a 2D lookup table to map X and Z to a single crystal.

49. PMT Gain, Energy & Linearity Calibrations

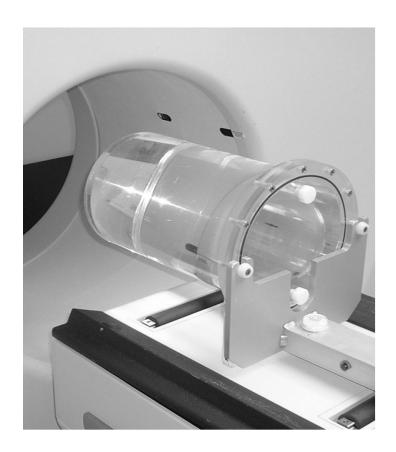



Erroneous mapping of crystals leading to errors in LOR mapping

- New calibrations quarterly or that recommended by Vendor.
- PMT gain and energy stability checked daily.

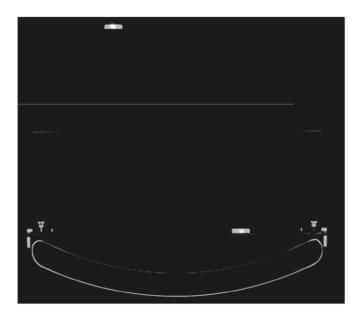
50. Normalization – Uniformity Correction

- a) Corrects for the variations in efficiency in LORs in the sinogram.
- b) Measurement using a uniform source phantom
- c) Acquired quarterly or after system maintenance.


Brad Kemp Mayo Clinic

51. Timing & Dead Time Calibrations

- a) Coincidence timing for every LOR performed by FSE semi-annually or as specified by the Vendor.
- b) Deadtime Calibration Performed by FSE by scanning of 18F in a water filled phantom as the activity decays (~12 hours). Acquire semi-annually or as specified by the Vendor.


52. Sensitivity Calibration [True_{corr} (cpm) / Bq/ml]

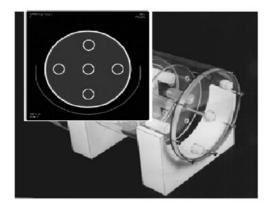
- a) Fill water phantom with calibrated 18F activity. Decay correct to the minute to the time of image acquisition.
- b) Calculate activity concentration in Bq/ml (9200 ml phantom).
- c) Acquire and reconstruct image slice of phantom.
- d) Measure counts in image slice and calculate sensitivity (cpm/Bq/ml).
- e) Expected SUV = 1.00

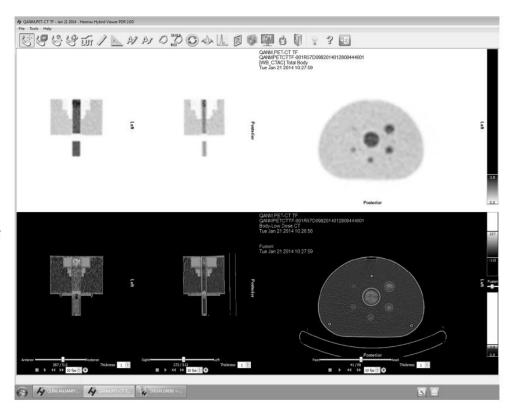
53. Test for PET/CT Alignment

- a) Image 18F (or 22Na) point sources whose location seen on CT scan
- b) Point source alignment to within 2 mm

54. CT Tests for PET/CT

- a) Perform monthly CT# linearity test or that specified by the vendor.
- b) Perform spatial & contrast resolution, slice thickness, & dose measurements as prescribed by CT department protocols.




TABLE I. Phantom reference materials, corresponding linear attenuation coefficients and CT numbers.

Material	Attenuation coefficient	CT number
Ethylene	0.1790	- 87 ± 5
Styrene	0.1870	-31 ± 5
Water	0.1932	0 ± 5
Lexan	0.2165	101 ± 5
Plexiglass	0.2165	121 ± 5

55. PET/CT Phantom

There is same activity concentration in the six spheres. Why does the SUV appear to differ?

PART 2. PET and PET/CT Shielding Requirements

56. Isotope Dose Rates

Isotope	γ-ray energy	photons/ 100 decays	Dose Rate (mSv-m²/MBq-hr)
Tc-99m	140 keV	90	0.02
F-18	511 keV	193	0.143
F-18/Tc-99m Ratio	3.6	2.1	7.1

57. Isotope Shielding Considerations

Isotope	γ-ray Energy	HVL lead (11 g/cc)	HVL Tungsten (18 g/cc)
99mTc	140 keV	.27 mm	~ 0.2 mm
18F	511 keV	4.1 mm	2.9 mm
F-18/Tc-99m Ratio	3.6	15.2	14.5

58. Radiation Dose - Areas of Concern

- a) Hot Lab
- b) Patient Uptake Room
- c) PET Scanner Room

59. Hot Lab Shielded Dose Calibrator and 5 cm L-Block

60. Handling the Isotope - Hand doses 100 times a patient dose

61. Whole Room Shielding

- a) 0.5 inches lead for uptake room
- b) 0.25 inches lead for scanner room

62. Portable Shields for Patients

- a) Pb shields 2.5 and 5.0 cm thick are available
- b) Dose reduction factors of 40 and 1900 respectively
- c) Problems: Patient may move in relation to gantry and shield can limit access to patient

63. Shielding for CT

- a) CT portion substantially the same as for any CT installation ($\sim 1/16$ " lead)
- b) Techniques for CT 140 kVp, 80 mAs and 125-150 cm axial length (non-diagnostic scan)
- c) Patients/day less than CT only installation (may be increased for off hour use)
- d) If shielded for PET-no additional shielding for CT
- e) If not shielded for PET shielding designed for CT may be required